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11.0 THE LOTKA-LESLIE MODEL

11.1 Introduction

The life table is a useful technique for studies of a stationary population
or of a single cohort. Changing populations require the additional features
provided by the Lotka-Leslie models which add age-specific reproductive rates
( m x ) to the survivorship (lx ) entries from which the classical life table is
developed.  A further feature of the Lotka-Leslie approach is the calculation of
a stable age structure (cx ) .

The use of life tables in ecology became popular after the classic paper
of Deevey (1947). Most of the illustrations for natural populations were
unfortunately based on observed age structures or band returns with little
assurance that the age data came from stationary populations or that survival
rates were constant in the banding data. More recently it has become evident
that these are risky assumptions. Burnham and Anderson (1979) and Anderson
et al. (1981) discussed the problems and gave tests of the underlying
assumptions for banding data. Tait and Bunnell (1980) noted that ages of
animals found dead could be used with mx data to estimate λ , and Van Sickle et
al. (1987) have conducted further exploration of that approach. Although
dependable survival rates cannot be extracted from age structure samples (if
used alone) of non-stationary living populations, some useful information can
be obtained from the "apparent" survival rate calculated from such
populations (Eberhardt 1988).

Since fluctuations in population size caused by human influences on
natural populations have become nearly ubiquitous, the classical life table has
become largely an abstraction and laboratory tool. Practical purposes are now
better served by the Lotka-Leslie model. However, "life tables" now appear in
the literature that contain reproductive data as well as survival data, and are
often the basis for calculation of a rate of change of a dynamic population. It
may be worthwhile to denote these tables as "augmented" life tables to
distinguish them from the classical life table, which contains only data on
su rv i vo r sh ip .

11.2  Discrete and continuous population growth

Many large mammal populations exhibit what Caughley (1977) termed a
"birth-pulse" growth pattern. That is, reproduction takes place in a relatively
short period each year. In between these pulses of growth, mortality takes its
toll, and the population decreases. However, most textbooks treat growth as a
continuous process and use an exponential curve to represent the growth
pattern. I believe that a more realistic model is that of compound interest, with
the compounding done annually through the birth-pulse. Fig. 11.1 shows the
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two models as compared to the likely actual trend of a population.
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Fig. 11.1 Population growth modeled by continuous (exponential) and discrete
(geometric) growth curves and the likely actual course of a population's size.

Very likely the best approach for most purposes is to use a "finite
growth" model, using λ  to denote the rate of change and writing:

                                                 Nt = No λ t                                                        (11.1)

where No denotes initial population size and Nt is population size t years later.

We can then interpret λ  as λ  = er for continuous growth and λ  = 1 + r for the
compound-interest or geometric growth model. Fig. 1 suggests that the
geometric growth model is closer to reality for birth-pulse populations, but the
frequent use of the exponential model in texts makes it desirable to have the
two interpretations in mind.

Another consideration is that we need methods to estimate rates of
change, and using different methods can lead to some confusion. When there
is a sequence of annual measurements of population size, the usual approach is
that of log-linear regression. That is, we take the natural logarithm of
population size and convert eq.(11.1) to:

                                       loge Nt = loge No + t loge λ                                    (11.2)

and fit a linear regression of the form y = a + bx. Then the slope (b) estimates

loge λ , and if we use the interpretation in which λ  = er, then r̂  = b inasmuch as

loge er = r. Using the interpretation in which λ =1+r, then b estimates log(1+r),
and we have to take the antilog and subtract unity to get r.
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In some circumstances, however, we may want to estimate rate of
change from two successive measurements of population size, getting:

                                                      λ̂  = 
Nt+1
Nt

                                              (11.3) 

We thus need to keep in mind the quantity being estimated. Using log-
linear regression the logical estimate is r, while the ratio estimator gives
λ directly. How important is the difference? If the rate of change is small, the
two interpretations are nearly indistinguishable. But for larger rates of
increase, the two interpretations are sufficiently different to make an
appreciable difference in, say, projections of population size into the future.
Fig. 11.2 exhibits the values of the two interpretations of λ .

1 . 51 . 41 . 31 . 21 . 11 . 00 . 90 . 80 . 7
-0.4

-0.2

0.0

0.2

0.4

0.6

LAMBDA

R
A

T
E

 O
F

 C
H

A
N

G
E

DISCRETE MODEL

CONTINUOUS MODEL

Fig. 11.2 values of r for the two interpretations of  λ. The continuous model (λ =
er) yields values appreciably lower than those for the discrete or geometric
model (λ  = 1 + r) when λ  is significantly below or above 1.0.

Some discussions of the continuous model present the rate of increase as
having two components, r = b - d, where b represents births and d, deaths.
These are "instantaneous" rates, i.e., appropriate to indefinitely small
increments of time. However, the model of Fig. 11.1 doesn't work that way. The
model for the actual trend for one year could be written as:

                                       Nt+1 = Nt s52 R = Nt λ                                               (11.4)

where s is a weekly survival rate. In actuality, the model would be more
complex, with s being a blend of rates over the year and R, the birth-pulse,
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usually doesn't occur instantaneously. Nonetheless, eq. (11.4) describes the
general pattern -- mortality occurs throughout the year, while reproduction
occurs in a short annual period. The geometric approximation operates as a
"step-function", assuming the population remains constant throughout the
year, and then jumping to the new level at year-end.

One very important consequence of the birth-pulse model is that the
basic unit of time is one year. This means that models for population growth
need to be difference equation models, rather than the continuous models
implied by the differential equations commonly presented in ecology
textbooks. Differential equations are often derived as limiting expressions for
difference equations. That is, a relationship is written as a difference equation
with time unit ∆ t and then ∆ t is assumed to become very small, resulting in an
"instantaneous" rate or differential equation. Thus, if the units of time become
very small (days, perhaps, instead of years) the discrete model becomes nearly
indistinguishable from the continuous model. This does not work with birth-
pulse models, due to the fact that births occur only once a year. Consequently,
the more realistic difference equation models are not necessarily suitably
approximated by continuous models. However, it is often possible to obtain a
perfectly reasonable  fit of a continuous model to the data. Thus, in Fig. 11.1, if
we observe population size annually just after births take place (or just
before), the continuous exponential model (dotted line) fits the data very
nicely. However, the rates of increase (r) implied by the two models may be
quite different unless λ  is in the neighborhood of unity (Fig. 11.2). In many
situations, one can ignore these details by using eq. (11.1). Problems may come
in at two points: (1) when estimating λ  by eqs. (11.2) or (11.3), and when a
more complex model for population growth is fitted.

11.3 Lotka's equation and the Leslie matrix model

The underlying model was derived by Lotka (1907) for continuously
reproducing populations. Leslie (1945) derived his matrix formulation as an
approximat ion to a cont inuously reproducing populat ion,  and the
demographic textbook approaches (e.g., Keyfitz 1968) also focus on the
continuous si tuat ion, since they are largely concerned with human
populations, where reproduction occurs the year around. Keyfitz (1968:Ch.8)
discussed convergence of the matrix equation to Lotka's integral equation. For
practical purposes, it is useful to be able to inter-relate the discrete version of
Lotka's equation (eq.(11.1)) with the Leslie matrix. This is readily done
through the characteristic polynomial (characteristic equation) of the matrix,
if the "maternity values" (Fx ) of the Leslie matrix are expressed as   Fx = somx,
where so is survival from birth to age 1. This points up the main difference
between the two formulations -- Lotka's equation pertains to the population
just after reproduction occurs, while the Leslie matrix pertains to the
population just before reproduction. That is, the first term of the stable age
distribution (eq.(11.6)) is co = B, the proportion of newborns in the population,
while the first element in Leslie's population vector (n1 ) represents the
youngest age class, just before parturition takes place, and one year after
births occur.

Cole (1954) showed that Lotka's integral equation can be replaced by a
summation for populations in which births are concentrated in a relatively
short period of the year. In practice, solutions of Lotka's equation have
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necessarily been approximated by a summation, in any case. The basic
equation is:                                  

where lx  denotes survivorship from birth (or from recruitment to some older
portion of the population) to age x, mx  represents age-specific reproductive
rates, and the summation ranges from the age of first reproduction (a) to the
maximum age (w) assumed represented in the population. Lotka's intrinsic
rate of increase (r) is widely used, but is replaced here by using λ  since a
finite rate of increase is appropriate for the many species populations that
reproduce in a short annual period ["birth pulse" populations in the useful
terminology of Caughley (1977)]. One can thus interpret λ  as er or 1+r.

The results given here were derived for "birth-pulse" populations.
Continuous breeding may take several forms. If the reproductive rate is
constant throughout the year, then equation (11.5) can be used as an
approximation, as was done by Birch (1948). If constant, continuous breeding
occurs only over part of the year, with no reproduction at other times, then it
may be necessary to resort to the approach of Leslie and Ranson (1940). In a
third pattern, reproduction may take place at any time of the year, but there is
a definite seasonal peak. Murray and Garding (1984) presented a general
approach for populations with "discontinuous breeding seasons" that depends
on an "average mx " but this rate is defined only by the statement (Murray and
Garding 1984:325) "mx  is the average fecundity of individuals in age class x, in
the sense that the Cx (t) individuals produce Cx ( t )mx  offspring between t and
t+1 that are observed alive at t+1...", and no method for calculating this
"average mx " was given in the paper. Consult Caswell (1989, 2001) for more
explicit approximations.

Lotka's model, in the form given by Cole (1954), represents the
population just after births take place. If we consider the population structure
just  before the annual period of parturition, the characteristic polynomial of
the Leslie (1945) matrix gives the same result. The Lotka equation (eq. (11.5)) is
somewhat easier to write out and preserves the central (lx ) entry of the
traditional life table. To construct a Leslie matrix, one only needs to note that
Leslie's reproductive rates can be written as Fx  = som x , where so = survival
from birth to age 1 (Eberhardt 1985). Annual survival rates appear in the
Leslie matrix as sx = l x + 1/l x  (hence so = l1). It is important to note that the
calculations here assume first-year survival (so) to be independent of fate of
the adult female. Caswell (1989, 2001) gave definitions of the Fi  that permit
structuring the Leslie matrix for censuses of "birth-pulse" populations taken
at any time of the year, but this requires some approximations. He also
considered birth-flow populations, and devoted most of the books to “stage-
structured” models, which are applicable when ages cannot readily be
assigned to individuals.

11.4  The stable age structure

The stable age distribution is calculated as:

1= −

=
∑λ x

x a

w

x xl m                                                (11.5)
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                                         cx = B λ-x lx                                                           (11.6)

because cx  represents proportions summing to unity, we have

1.5  Augmented life tables

An "augmented" life table is simply a convenient way to present the
data for Lotka-Leslie calculations in table form. Basic data for an augmented
life table are a column of ages, and the lx , mx , and cx  columns. Iterative
solutions of eq.(11.5) are needed to determine the rate of increase (λ  or r) and
to calculate cx . Such solutions are readily obtained with a simple computer
program (or on a programmable calculator). A convenient alternative is to
incorporate the data in a spreadsheet program that includes a column of
values of  λ - x  lx  mx . Trial and error calculations can then be used to satisfy
eq.(11.5). However, many of the currently available spreadsheet programs
include iterative procedures, so the table can be set up to provide a direct
solution of eq.(11.5). This can readily be done with the “SOLVER” routine in
EXCEL (found in the TOOLS menu). The column of λ -x l x m x  values should
nonetheless be maintained, since it is both a convenient way to examine
approximations and provides useful information,  described below. One of the
convenient features of the spreadsheet approach is that the data can often be
transferred directly into graphics and word processing programs. At least one
of the commercially available spreadsheet programs (EXCEL) also incorporates
routines for using matrix equations, so that various further operations on the
Leslie matrix are feasible directly from an augmented life table, if desired. For
most practical purposes, the Leslie matrix is not needed. The term,
“augmented”, is likely superfluous, as most contemporary writers now simply
use “life table” to include reproduction, although the original meaning
concerned only survivorship.

11.6  An augmented life table

The example used here (Table 11.1) is based on data on elk (Cervus
e laphus ) reported by Houston (1982). The survivorship data given by Houston
(1982:Table 5.8) were fitted to an equation given by Eberhardt (1985:eq.(6)) by
nonlinear least-squares on logarithms of the survival data (Fig. 11.3). The
equation used is:

Reproductive data (Fig. 11.2) from Houston (1982: Tables 5.1 and 5.2)
were used with eq (11.8), developed by Eberhardt (1985):

B
lx
x

x

w=
−

=
∑

1

0

λ

l a a x a bx = − − − −exp[ (exp( )]1 2 3 3 1                                         (11.7)

m a b x c a b xx = − − − −[ exp( ( )]exp[ exp( )]1 13 3                                    (11.8)
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 Pregnancy rates for older animals were obtained as a weighted average
of the 1962-1967 data given by Houston (1982: Tables 5.1 and 5.2). Data for the
older elk were reported as an average for all animals 16 years of age and older,
and are arbitrarily plotted here at age 18.

There is now a considerable degree of confusion in the literature about
parameter definitions, which is too extensive and too pervasive to discuss in
detail here. Jenkins (1988) provided a good review of the confusion in
textbooks. David (1995) more recently reviewed different formulations of e q .
(11.5). Much of the difficulty stems from the fact that both the Lotka and the
Leslie approaches actually refer to continuously-breeding populations, but are
computed with discrete approximations. Definitions of continuously breeding
populations thus involve averaging over some time period, usually one year in
length. The present approach depends on Cole's (1954) development of the
"Lotka" equation as a discrete model where reproduction is assumed, in effect,
to occur instantaneously at the same time every year.

Applications of the augmented life table to actual field data must, in
nearly all cases, use that data which can be obtained on a particular
population. "Birth rates" are then often actually observed as pregnancy rates.
Much of the confusion as to definitions (e.g., "natality", "fecundity") and
differences between the Lotka and Leslie models can be avoided in practice
simply by computing both approaches. This is readily accomplished by
spreadsheet methods.

All that is needed is to multiply the cx  column (stable age disrtibution)
of Table 11.1 by an initial population size (No). These values can then be
projected forwards one year by multiplying by entries in the sx  column to
create a column (N1) of projected numbers in age classes 1,2,3,... . The first
entry in N1 (age class zero) is obtained as the sum of products of the mx  entries
(Table 11.1) with those in column N1 (in most spreadsheets it is convenient to
enter the individual products in an intermediate (B1) column). The same
procedure may be used to project N1 to N2, N2 to N3, and so on. The overall
procedure is essentially that of the Leslie projection matrix, yielding the
corresponding series of population vectors (N1,N2,N3, ...). The only difference,
apart from a lack of matrix notation, is that newly-born individuals are
represented by an entry, whereas they do not appear in the age vectors of a
Leslie matrix projection.

The projection calculations should carry forward fractional "animals".
If this is done, then the ratio of successive sums will yield the same value of λ
as obtained by solution of eq (11.5). It is instructive to round the projection
vector (Ni ) entries (readily done by a standard spreadsheet command) and
calculate a series of λ i . For small and moderate population sizes such a
calculation gives a worthwhile illustration of the desirability of including no
more than 2 decimal places in reporting estimated values of λ . For example, the
data of Table 11.1 were used to project an initial elk population of 1,000
individuals. With fractional entries, the successive ratios of column sums are
all 1.20133, but if rounding to the nearest "individual" in each age-class is
used, successive values are 1.2010, 1.1998, 1.1964, 1.1972, 1.2010, 1.2000, 1.2013,
1.2012, 1.1989, and 1.2005.  Note that, in calculating λ  by eq.(11.5), one will
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usually carry more than 2 decimal places in order to be sure that eq.(11.5)
"ba lances" .

Table 11.1 Augmented life table for elk data from Houston (1982)

Age Reproductive Survivorship Adjusted Stable age Survival
rate net maternity distribution rate

m ( x ) l ( x ) rate c ( x ) s ( x )

0 0 1 0 0.2426 0.6745
1 0 0.6745 0 0.1362 0.995
2 0.0749 0.6711 0.0348 0.1128 0.995
3 0.4682 0.6677 0.18031 0.0934 0.9934
4 0.4732 0.6634 0.1507 0.0773 0.994
5 0.4728 0.6594 0.1246 0.0639 0.9936
6 0.4721 0.6552 0.1029 0.0529 0.9929
7 0.4711 0.6505 0.0849 0.0437 0.9918
8 0.4696 0.6452 0.0698 0.0361 0.9903
9 0.4674 0.6389 0.0573 0.0297 0.988

1 0 0.4641 0.6312 0.0468 0.0245 0.9845
1 1 0.4592 0.6215 0.0379 0.02 0.9795
1 2 0.452 0.6087 0.0305 0.0163 0.9719
1 3 0.4416 0.5916 0.0241 0.0132 0.9608
1 4 0.4264 0.5685 0.0186 0.0106 0.9445
1 5 0.4048 0.5369 0.0139 0.0083 0.9208
1 6 0.3746 0.4944 0.00983 0.0064 0.8865
1 7 0.3337 0.4383 0.0065 0.0047 0.8377
1 8 0.281 0.3671 0.0038 0.0033 0.77
1 9 0.2174 0.2827 0.0019 0.0021 0.6791
2 0 0.1484 0.192 0.0007 0.0012 0.5632
2 1 0.084 0.1081 0.0002 0.0006 0.4261
2 2 0.036 0.0461 0 0.0002 0.2813

The “adjusted net maternity rate” is:

                                                             λ−x
x xl m
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Fig. 11.3. Survivorship (upper curve) and reproductive data for elk from
Houston (1982). Fitted curves (eqs. (11.7) and (11.8)) are shown, along with
estimated age-specific rates (mx  rates were averaged for some age groups).

11.7 Reproductive and survival curves

The Lotka-Leslie model depends on age-specific rates. Ideally, λ  would be
calculated from eq. (11.5) using estimates of reproductive (mx ) and
survivorship (lx ) rates for each age class, and the models are often presented
as if such individual age-class values were available. In practice, however, we
seldom have the large volume of data necessary to estimate rates for each age-
class, and some kind of averaging has to be employed. Because the lx  values are
calculated as the product of individual survival rates such curves always
appear smooth, even though the actual survival estimates may be very erratic.
It is thus desirable to also plot individual survival rates.

In practice, fitting curves like those of eqs. (11.7) and (11.8) may not be
particularly useful or desirable. Very likely their main util ity l ies in
comparing different data sets and in dealing with the issue of senescence.
Because sample sizes are usually small, very few older individuals will be
observed so that little will be known about senescence in a given species. In
many studies, the possibility of lower reproductive and survival rates in the
older age classes has simply been ignored. For large vertebrates with
relatively high adult survival rates this practice can introduce a significant
b ias.

The practical way to limit such a bias is simply to truncate the age
distribution, i.e., to choose a value of the maximum age (w) used in eq. (11.5)
below the maximum age actually observed for a given species. Very likely the
main value of fitting curves to reproductive and survivorship data is just to
demonstrate the impact of various choices of w on the resulting estimate of λ.
In many cases there may not be enough data to make a guess at w, so that it
may be helpful to review data on other species, as shown in Fig. 11.4 below.
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11.8 Some useful approximations

The approximation used here serves when individual age-specific rates
cannot be obtained for all age-classes, as usually is the case in practice. It
represents survivorship by lx  = la s(x-a) (when x > a)  and reproductive rate by 

mx = m, so that the net maternity curve is lx mx = m la sx , where la denotes
survival to the age of first parturition, and s denotes adult survival rate.
Senescence is approximated by truncating the net maternity curve, i.e., w in
eq.(11.5) is reduced to compensate for dropping the senescence terms of eqs.
(11.7) and (11.8). Lotka's equation (eq.(11.5)) then has the solution used by
Eberhardt (1985:eq.(9)), expressed here as a polynomial in λ :

                          λa -sλa-1 -lam [1 - (
s
λ) 

w-a+1
] = 0                                   (11.9)

when w becomes very large we have:

                            λ a - sλ a-1 -lam = 0                                                (11.10)

If λ  = 1, then lam = 1 - s, so that recruitment to reproductive age just
balances annual mortality (1-s), as required for stationarity.  Because 1 or 2 of
the younger age classes often show sharply lower reproductive rates than
older animals, one may need to use 2 or 3 values of m, rather than the single
value of eq.(11.9) for accuracy in the approximation. The polynomial of
eq.(11.9) then becomes somewhat more complicated, but is not needed in
practice, as the relevant entries can simply be introduced in a spreadsheet
table like Table 11.1 for a solution.

When some of the subadult age classes can be assumed to have the same
survival rate (s) as adults, eq. (11.9) can be written in terms of survival to age
k (as lk ) after which survival is at the adult rate, so that la = lksa-k, giving:

                           λ a -sλ a-1 -lk sa -km [1 - (
s
λ) 

w-a+1
] = 0              (11.11)

Utility of the approximations  can be assessed by comparing the adjusted
net maternity curve for the approximate values with values for the fitted
equations (eqs.(11.7) and (11.8)). For the elk data discussed above, the
approximation is very good (Fig. 11.4). Using the data on fur seals (Cal lorh inus
urs inus ) of Eberhardt (1985) gives a little poorer fit (Fig. 11.5), but nonetheless
a good approximation.
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Fig. 11.4. Examples of survivorship and reproductive data. The domestic sheep
data are from Hickey (1960), while the feral sheep data are from Grubb (1974).
These curves show the impact of mortality early in life on a wild population
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very nicely. The feral horse survivorship data are from Garrott and Taylor
(1990), while the horse reproductive data are from Berger (1986). The African
buffalo survivorship data are from Sinclair (1977), the fur seal data from
Eberhardt (1981), and the fin whale data from Mizroch 1981.
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Fig. 11.5 Approximation (solid points) compared to values (bars) from fitted
curves (eqs.(11.7) and (11.8)) for elk data from Houston (1982).
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Fig. 11.6. Approximation (solid points) compared to data from fitted curves
obtained by Eberhardt (1985) for data on northern fur seals.

11.9 Approximate variance of λ

Setting confidence limits on λ is likely best done by the statistical
technique of bootstrapping.  However, bootstrapping does not supply estimates



                                                                                                                                     11.13

of the relative magnitude of the several components contributing to the
overall variance. Such estimates are essential in planning studies, i. e., h o w
much effort should be devoted to estimating each component, and what total
effort is required to produce a given width to the confidence interval?
Questions of this kind can be approached by approximating the variance of λ
by the "delta method".

A general expression for obtaining a variance by the delta method is
(Seber 1982):

where g(x ) is some function of several variables, xi , v(xi ) is the variance of a

given xi ,  
∂g
∂xj     represents the partial differential of g(x ) with respect to xi ,

and cov (xi ,xj ) denotes the covariance of two variables xi  and xj. In the cases
considered here, it is assumed that these covariances are zero or negligible.

The partial derivatives provide a useful byproduct, in that their
numerical values give an indication of the relative importance of each
component variable in determining λ . The partial derivatives have to be
obtained by implicit differentiation, due to the fact that there is no "closed
form" expression for λ , i. e., λ  = g(x ) cannot be written as a simple
mathematical expression (λ  is estimated by iterative methods from eq.(11.5),
(11.9), (11.10), or (11.11)). Inasmuch as the partial derivatives are complicated,
they are most conveniently obtained by one of the computerized routines now
available for equation solving. Results for eq (11.9) are:

                      
∂λ
∂s  = λ [(w-a+1)lamλ (

s
λ )w-a+1 - sλa]/sA                              (11.13)

                      
∂λ
∂l a  =  mλ2[(

s
λ )w-a+1 -1] /A

                                 
∂λ
∂m  =  laλ2[(

s
λ )w-a+1 -1] /A

where A = (w-a+1)lamλ (
s
λ) w-a+1 + λa(as - s -aλ ) .

Recently there has been a considerable amount of interest in
“sensitivity” and “elasticity”. Sensitivity has been defined as the partial

derivative of λ  with respect to aij  and elasticity as:

These definitions refer to the individual elements, aij , of a Leslie matrix,
whereas equations (11.13) are based on implicit differentiation of of eq. (11.9).
Nine papers in a Special Feature in vol. 18(3) of the journal, Ecology, describe
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recent developments. These papers  nearly all require matrix algebra and use
“stage-structured” models extensively.

Using the delta method requires variance estimates for each component
of the equation used. The main use at present appears likely to be in planning
a study, or in deciding how to improve a given data set by collecting more
observations. One then might assume a binomial distribution for the survival
rates for planning purposes. Obtaining a simple variance formula (like the
binomial) for reproductive rates is a subject that needs further investigation.
More research is also needed to evaluate the accuracy of both the delta method
and bootstrapping when used with the Lotka-Leslie model. Two approaches are
used here. One is to compare the two methods on actual data sets for several
species, and the second is to test the methods by monte carlo simulations.

Bootstrapping is a relatively new statistical technique that takes
advantage of the "number-crunching" ability of modern computers. The
ability to do many thousands of computations very quickly makes it feasible to
"resample" a data set and extract variance estimates. The surprising feature of
bootstrapping is that useful results appear to be available for quite small
samples.

The approach used here to set confidence limits on λ  is reasonably
simple, and can be illustrated with reference to eq. (11.9). For simplicity,
suppose n1 observations are available for estimating s, n2 for la, and n3 for m,
and stored in computer files. Exactly n1 random draws with replacement are
made from the file of data for s ("with replacement" means that the same data
point can be drawn more than once). An estimate of s is then made from this
sample by whatever technique was used for the original estimate. The same
process is carried out for la and m, using n2  and n3 samples  drawn with
replacement, and an estimate of λ  formed from the resulting data.

The technique for forming confidence intervals used here consists in
repeating the above scheme a large number of times, say 1,000. The resulting
1,000 estimates are arranged in a frequency distribution, and confidence limits
are determined as the points on the frequency distribution that cut off
approximately α /2 of the observations in each "tail" of the distribution, with α
usually set at 0.05. Thus for 1,000 bootstraps, the confidence limits are the
points cutting off the smallest 25 observations (lower confidence limit) and
the largest 25 observations (upper confidence limit). This is the "percentile"
method (Efron and Tibishirani 1993: Ch. 13).

An alternative approach is to use the set of bootstrap estimates to
calculate a standard deviation (s), and set approximate 95% confidence limits as
the original estimate of l +1.96 s. This technique has also been applied to the   
examples described below, and in the monte carlo simulations, and gave results
very close to the percentile method.

Most of the applications described below have been based on eqs. (11.9)
through (11.11), and values of a and w were assumed known. Given enough
appropriately collected data, one can bootstrap eq. (11.5) directly. Results for
one example appear below, along with examples depending on the
approximations given above.
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11.10  Examples of bootstrapping

The following figures show examples of bootstrapping for a number of species.
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Fig. 11.7. Outcome of bootstrapping survival and reproductive data for the
Hawaiian monk seal on Laysan Island. The reproductive and survival data were
described by Johanos et al (1994) and Gilmartin et al. (1994). Frequency
distributions for the components of eq. (11.5) are shown here. In this instance,
the adult survival rate was assumed to apply from age 1 onwards, so that k = 1.
Early survival  has 2 components, survival from birth to weaning, and from
weaning to age 1. The estimated value of λ was 0.97, with 95% confidence limits
of 0.91 to 1.01. The indicated rate of decline in the population was supported by
a log-linear regression on trend data, which gave essentially the same value of
λ.
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Fig. 11.8. Bootstrapping data from grizzly bears in the greater Yellowstone
area. Details of the study were reported by Eberhardt et al. (1994). In this
example, two subadult rates were used, so that la = so  s14, where so = cub
survival, and s1 = annual subadult survival rate. Cub survival is appreciably
less than subadult survival, which in turn is less than adult survival.
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Fig. 11.9. Bootstrapping data for Florida manatees. Manatees reproduce at about
3 year intervals, and thus high adult survival is essential for population
g r o w t h .
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Fig. 11.10. A study of feral horses by Garrott and Taylor (1990) provides
sufficiently extensive data for bootstrapping eq. (1) directly. The frequency
distribution of λ  above is from 1,000 bootstraps of Pryor Mountain horse data.
The 95% confidence limits were 1.122 to 1.196.
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Fig. 11.11. Bootstrapping data from a study of California sea otters. Data largely
from Siniff and Ralls (1991).
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11.11 Delta method examples

Applying the delta  method of eq.(11.12) to data on actual populations
gives the results shown in Table 11.2.

Table 11.2  Data from the delta method for actual populations.

Monk Grizzly Manatees Feral Sea
seals bears horses otters

Survival to age k l k 0 .38 0.52 0.68 0.968 0.63
Reproductive rate m 0.28 0.33 0.15 0.282 0.23
Adult survival s 0 .87 0.92 0.95 0.974 0.91
Age first reproduction a 6 5 4 3 3.5
Maximum age w 2 0 2 0 5 0 2 0 1 5
Lambda
    Bootstrapping 0.97 1.046 1.161 1.013
    Delta method 0.97 1.046 1.158 1.006
Coefficients of variation
     Delta method 0.03 0.02 0.01 0.009 0.07
     Bootstrapping 0.03 0.02 0.01 0.017 0.07

Components of variance
    Survival 0 .96 0.44 0.58 0.21 0.81
    Early survival 0 .02 0.46 0.18 0.03 0.1
   Reproduction 0 .02 0.1 0 .24 0.76 0.09
      Total 1 1 1 1 1

Partial derivatives
    Survival 1 .1 0 .57 1.02 1.03 0.9
    Early survival 0 .11 0.2 0 .09 0.16 0.17
    Reproduction 0 .3 0 .32 0.5 0 .55 0.56

11.12  Comparisons with direct estimates of λ

From Table 11.2 it appears that the delta method and bootstrapping yield
much the same estimates of λ and variability. One might thus use bootstrapping
to obtain confidence limits and utilize the delta method to examine components
of variance as a guide to improving estimates of λ by obtaining larger samples
of data on the parameters that contribute most to overall variability. Thus in
Table 11.2  the main improvement for monk seals will come from obtaining
more information on adult survival, which seems often to be the case.
However, the grizzly bear data suggest improvements might be equally
important for both early and adult survival. For the particular feral horse
herd used in the example, it appears that more data on reproduction  should be
obtained, but this likely is an exception to the general rule due to
c i rcumstances .



                                                                                                                                     11.21

An important further check on the estimates of λ  obtained from the
approximations obtained above is to compare estimates of λ  from reproductive
and survival data with those obtained from direct measures of population size,
usually by log-linear regression following the examples of Chapter 9. Fig.
11.12  shows results of such a comparison. The line shown in Fig. 11.2 is a 1:1
line, i.e., shows exact agreement of the 2 estimates. The major discrepancy
appears to be the data for caribou, and it seems likely that it is due to
underestimation of adult female survival rates, inasmuch as they were
reported to be significantly lower than those for subadults.

Fig. 11.12.  Comparison of direct estimates of lambda with those obtained from
reproductive and survival data by the Lotka method. Thirteen examples are
plotted of which 2 coincide with other points.

11.13 Development of stable age-structure

The following material gives a simple approach to development of the
Lotka equations. A formal proof requires methods of the calculus on a Complex
domain. The derivation used here assumes the end result, so does not consist of
a "proof" but is rather a simple demonstration of the mechanics of the process.
A further simplification is to assume time units of one year and to regard
reproduction as occurring instantaneously at the beginning of each year.  We
also assume that the population is growing geometrically at a rate, r.  Thus we
h a v e :

N o = initial population
rNo = number added in first year
N1 = No + rNo = No(1 + r) = population at end of first year

N2 = N1 + rN1 = No(1 + r)2 = population at end of second year
and, generally:

                                Nt = No(1 + r)t  = population at end of tth year               (11.14)

The above equation admits the possibility of fractional animals, which is
not a matter of great concern if the population size (Ni ) is large enough to
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avoid the influence of chance fluctuations. There are advantages in keeping
fractional animals and thus regarding the values calculated as expectations.

A convenient tabulation of the process has time (in years) along the left
margin and the series of year-classes along the top.  A further simplification
is achieved by supposing that a constant fraction (q) of the animals are lost
each year so that l-q = p survive to the next year.  It should be noted that this is
not a necessary assumption, but is used here to avoid complications.  The first
two years are shown as:
                                           Year-class                            Total
Time        1                     2                3                   ....                     population                      
   0           1                                                                         1
   1           p         q+r                                                         1+r

Thus the first age-class, at time zero, might be regarded as a "pioneer"
generation in a new habitat -- or, equivalently, as some particular segment of
a larger population.  A fraction, p, of this initial group survives to year 1, as
shown at time 1, under year-class 1.  Since it is postulated that the population
increases to 1+r at the end of the first year, it is necessary to add q+r new
recruits -- q to replace mortality in the "pioneer" group, and r to achieve the
requisite increase.  Going into the second year, the table is:

                                          Year-class                            Total
Time        1                     2                3                   ....                     population                      
   0           1                                                                        1
   1           p        q+r                                                         1+r
   2           p2      p(q+r)   (q+r)(1+r)                            (1+r)2

Fate of the pioneers is simply that another fraction (p) survives to year 2, as
happens to year class 2.  The entry in column 3 contains items to replace the
losses, that is p-p2 and q+r - p(q+r).  Since q + p = 1, this reduces to

                   p-p2 + q+r - p(q+r) = q(1+r)

and we require that the previous year's total (1+r) be increased by a fraction r
to sustain the geometric rate of increase.  Hence year-class 3, which contains
all of that year's recruits, has to be:

               q(1+r) + r(1+r) = (q+r)(1+r)

which gives the second year total (adding along the second row) as (1+r)2.

The third year population is constructed in the same way, giving:
                                         Year-class                                  Total
Time        1                     2                    3                       4                       population                     
   0           1                                                                              1
   1           p       q+r                                                                1+r
   2          p2      p(q+r)     (q+r)(1+r)                                 (1+r)2

   3          p3      p2(q+r)   p(q+r)(1+r)    (q+r)(1+r)2      (1+r)3

and a general formula for the ith year can be written down as:
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Total population = pi  + pi-1(q+r) + pi-2(q+r)(1+r) + pi-3(q+r)(1+r)2 + . . . +
pi-k (q+r)(1+r)k-1 + . . . + p(q+r)(1+r)i-2 + (q+r)(1+r)i-1 = (1+r)i

where i is the last year considered and k denotes a general term for some
intermediate year class.  Dividing through by the total population, (1+r)i , gives
the proportion in each year-class in year i:

[ (
p

1+r
  )i + 

q+ r
1+r   {(

p
1+r

  )i-1 +  (
p

1+r
  )i-2 + ... + (

p
1+r

  )i-k  + ...+ (
p

1+r
  ) + 1}] = 1 (11.15)

Note that p is less than unity, so p/1+r is also a fraction, hence large powers of
this quantity tend to become vanishingly small.  Hence, once i becomes large,
the "pioneer generation" virtually vanishes, as do the other early year-
classes, and the quantity in brackets approaches an infinite geometric series
(but written backwards).  Using the equation for the sum of a geometric series:

          1 + x + x2 + x3 + . . . = (1-x)-1 (x < 1)

we thus can write equation (11.15) as approximately:

                        
q+r
1+r   [1 - 

p
1+r  ]

-1 =  
q+r
1+r  

1+r
q + r  = 1

and the proportion corresponding to the xth year class is:

                                                 cx =  
q+r
1+r   [

p
1+r ]

 x                                              (11.16)

The quantity  
q + r
1+r   in equation (11.16) is also the ratio of any year's recruits to

that year's population total (consider the last year-class entry in any row of
the tables above), hence we denote it as

b =  
q+r
1+r                  (11.17)

and regard this as the "birth-rate" per head (really a recruitment-rate).

Since survival from year-to-year is constant, the survival for x years is
px , and equation (11.16) can be rearranged to

cx = b(1 + r)-x px                    (Σ cx = 1)                             (11.18)

11.14  Lotka's equations

In the development thus far, we have each year arbitrarily introduced
the number of recruits required to sustain a population increasing
geometrically, and this turned out to be a constant fraction (b) of the
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population total.  If we now assign age-specific reproductive rates, mx , to each
age-class ("year-class" above), an equation for b is:

That is, b is the recruitment-rate per head and it is contributed to at a rate mx ,
by each proportion of the population, cx.  Of course mx  may be zero, since the
early and late age-classes may not reproduce.  However, whether or not
reproduction occurs in the first age-class depends on the species and the
definition of time of recruitment, which might conceivably be set at sexual
maturity.  Using infinity for the upper limit of summation in equation (11.6) is
a convenient convention and avoids the necessity for defining an upper limit
to survival.  When actual examples are considered, we replace it with w, the
maximum age considered in an analysis. 

If the definition of cx  given by equation (11.14) is inserted in equation
(11.15) we have:

                                                 b =  ∑
x=0

oo
b(1+r)-x pxmx 

o r :

                                                  1 =  ∑
x=0

oo
(1+r)-x pxmx                                           (11.20)

and this now gives a general equation containing the several quantities
involved in population analysis -- survival, reproduction, and rate of increase.

Recalling that the cx  are proportions summing to unity permits a useful
rearrangement of equation (11.18), namely:

1
b  =  ∑

x=0

oo
(1+r)-x px                                      (11.21)

Equations (11.18), (11.20) and (11.21) then provide tools for calculating the
essential features of population structure.  If reproductive and survival rates
are known, a trial and error (iteritive) solution of equation (11.20) gives the
rate of population growth (r) to be expected when the population has reached
the stable age-structure given by equation (11.18).  Equation (11.21) provides a
means for calculating b after equation (11.20) is solved.

The above equations suffer one obvious fault in that a constant rate of
survival (p) has been assumed.  However, the previously mentioned results of
Lotka (1939) and Leslie (1945, 1948) permit replacement of the term px  above
by one that denotes an age-specific survival rate from recruitment to age x

reproductive rate =  b =                      c mx x
x =

∞

∑
0

11 19( . )
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(dated from the time of recruitment).  Hence equations (11.18), (11.20) and
(11.21) may be rewritten in terms of age-specific survival by replacing px  by
l x .  In practice, one usually estimates annual survival as a series of rates like
po  = survival from recruitment through the first year, p1 = survival in the
second year, etc., and lx  is then obtained as the product of several such rates.

If reproduction is regarded as a continuous process (as was done in the
original development of the equations), then it is necessary to replace the
summations above by integral signs, and the geometric rate of increase, (l+r)x ,
now becomes exponential. However, solutions require the use of the form
involving summations, in any case. Hence, we will consider only the
summation forms here. These are recapitulated below, using lx  instead of px :

                                                         
1
b  =  ∑

x=0

oo
(1+r)-x lx                                           (11.22)

                                                        cx = b(1 + r)-x lx                                             (11.23)

                                                       1 =  ∑
x=0

oo
(1+r)-x lxmx                                         (11.24)

The rate, r, is widely known as the "intrinsic rate of increase" (a term
coined by A. J. Lotka), and has been subjected to all sorts of attempts at
definition in terms of optimal conditions, etc.  The best definition is that of
equation (11.24), i.e., given constant age-specific reproductive (mx ) and
survival rates (lx ) a population will tend to develop a stable age structure, and,
if that age structure is attained, the population then increases at rate r.  From a
practical point of view, one may doubt the likelihood that a particular
population has or will actually attain the above conditions, but r is still useful
as a quantity defined by equations (11.24) for a given observed set of rates mx
and lx .

Before considering some simplifications of the above equations it is
worth noting that a similar development can be constructed for males by
assuming a 1:1 sex ratio at recruitment, and that p1 represents male survival.
Then :

Age structure for males:

                                                     cx  = 
q1+r
1+r  (1+r) -x p1x                                    (11.25)

Total population at year i = (1+r)i [1 +  
q1+ r
1+r   ]                         (11.26)

and, the sex ratio in the population then is:
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females/males =  
q1+ r
1+r                                          (11.27)

11.15  Net rate of increase

Some variations of the basic equations (11.22 to 11.24) are useful.  One is
the "net rate of increase" or "net reproduction rate" defined as:

Ro = ∑
x=0

oo
 lxmx                     (11.28)

or, in terms of an integral (continuous reproduction):

Ro = ⌡⌠

0

oo
 lxmxdx                                             (11.29)

These equations correspond to equation (11.24) with r=0, whereupon Ro=1 and
the population is "stationary" (neither increasing or decreasing).  There is
thus the expectation that if Ro > 1 the population should be increasing and vice
versa.  This is true enough if the age structure is that given by equation
(11.19), otherwise it is not necessarily the case, since the equations do not take
current age-structure into account.

R o  has also been used to define something called the "length of a
generation".  In those species reproducing only once, the length of a
generation can be explicitly defined.  Familiar examples are insects that
reproduce annually and die (or the cicadas, with as much as 17 years of larval
development before reproduction and death in a few weeks of adult life), and
the Pacific salmon with 3 or 4 year "cycles" between spawning of parental and
filial generations.  But when a species exhibits repeated and age-specific
reproduction the replacement of one generation by another is a gradual
process, with no specific time of transition.  Thus there is a need to define
some measurement if one wants to consider "length of a generation."  The
necessity for a definition is of major importance in terms of genetic behavior
of a population.

Leslie (1966) gives several definitions of length of a generation, with
his own recommendation being:

T
_ 

 = ⌡⌠

0

oo
 xe-rx lxmxdx                                   (11.30)

Leslie pointed out that this is not the same as an earlier definition:

T = 
logeRo

r                                                     (11.31)
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Another definition that has been used is that of the mean age of mothers at the
birth of their daughters or "cohort generation time":

Tc =

⌡⌠

0

oo
xlxmxdx

Ro
   =  

⌡⌠

0

oo
xlxmxdx

⌡⌠

0

oo
lxmxd x

                                  (11.32)

which is equivalent to T when r=0.  The above equations are written with
integrals as would be the case for continuous reproduction, but summation
signs need to be substituted for cases where reproduction occurs at discrete
time intervals.

Equation (11.31) seems difficult to justify as a useful measurement of
"generation time," and for most practical purposes one might elect to use
either equation (11.30) or (11.32), with the latter being a little less trouble to
calculate.  However, students should consult Leslie's paper and Caswell (1989,
2001) if they have occasion to use mean length of a generation.

11.16  Practical applications

With a few exceptions, the actual use of equations (11.22) to (11.24)
entails circumstances that permit various simplifications.  The exceptions
consist largely of human populations (demographic and actuarial data) and a
few species that have been extensively studied in the laboratory or in
domestication. The main simplification results from the observation that 2 or 3
different survival rate estimates may serve to represent lx .  This largely
results as a consequence of constant survival rates for mature individuals.
Since most wild animals die violently from predation, accidents, or hunting,
and do so at rates great enough to preclude more than a small fraction
reaching any sort of old age, it is difficult to determine whether adult age-
classes may exhibit age-specific mortality which is simply not observed or
whether the adult survival rate is indeed virtually constant.  Since very large
samples are needed to demonstrate relatively small changes in survival rate,
and since year-to-year changes in overall rates do clearly occur, it is not
surprising that age-specific rates have seldom been recorded for mature
an ima ls .

Whether the younger age-groups are assigned one or two survival rates
depends in part on longevity of the species and on quality and quantity of the
available data.  In most circumstances it seems desirable to use two rates; one
for an interval including birth and the relatively short period of high
mortality just after birth, and the second for the subsequent interval up to
maturity.  Very likely early adult life should also be characterized by an
additional rate, but only rarely are sufficient data available to do so.  The
choice of number of survival rates also depends on the choice of age for
recruitment to the population being studied.  Thus if new recruits are not
tallied until they are nearly mature, two survival rates may suffice.
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Somewhat similar considerations may apply to reproductive rates.
Many avian species appear to have a virtually constant clutch size, so that
only one reproductive rate need be used, while the shorter lived mammals may
have a smaller first litter, but effectively constant litter size thereafter. Many
of the larger mammals show distinct age-specific rates, increasing to the
"prime of life", holding relatively constant for some considerable time
thereafter, and possibly declining to nearly zero in "old age".  In practice,
then, age-specific reproductive rates may constitute from two values (zero for
younger age-classes and a constant rate for all mature age classes) to perhaps
3 to 5 significantly different rates.

Given a reduced set of lx and mx values as suggested in the above
paragraphs, one can then simplify the calculations required by equations
(11.22) to (11.24) or produce alternative versions to serve as the basis of
inferences about population trend, or allowable harvest, etc.  Leslie (ibid.)
gives an example for a seabird (Uria aalge, the guillemot or murre) which           
serves to illustrate the procedure.  This species first breeds at 3 years of age
and it is assumed that clutch size remains constant thereafter.  Lesl ie
calculated mx  on the basis of the number of young at fledgling stage, "ready to
go to sea", and equal numbers of males and females, so that we start dating
events at this time, with mo=0, m1=0, m2=0, m3= F = mx  (x > 3), where F is a  
constant (since only a single egg is hatched by a breeding pair, F is at most
0.5). Survival for the first year after hatching was defined as Po, while that in
the second year was P1, and the rate in all subsequent years was considered a
constant value, P.  The essential rates are thus:
Age (x) 0              1   2  3   x(x>3)             
Su rv i va l 1 po p1 p p

     lx 1 po pop1 pop1p pop1px -2

      mx 0 0 0 F F

If we let  λ = l+r, as used by Leslie, then equation (11.15) becomes:

  1 = λ -0(1)(0) + λ -1po(0) + λ -2pop1(0) + λ -3Pop1pF + λ -4pop1p2F

     = λ -3pop1F(1 + λ -1p + (λ -1p)2 + ...)

     = λ -3pop1F(1 - λ -1p)-1

so that:

                               1 - 
p
λ   = λ-3Po p1F

and :

λ3 - pλ2 - pop1pF = 0                                               (11.33)

Hence, given values for Po, P1, P, and F, one can calculate λ  (and thus r) by
solving the cubic equation (11.33).

The net rate of increase, Ro is (equation 11.28):
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Ro= pop1F(1 + p + p2 + ... ) = 
pop1pF
1  -  p                                  (11.34)

so that if r=0 (and thus λ =1) equations (11.33) and (11.34) are identical and
represent conditions when the population is of constant size.  Thus one can
consider the plausibility of the available estimates of Po, P1, P and F over long
periods of time, or conjecture as to the future of the population if survival
and/or reproductive rates change.

Using equation (11.24) and  λ = l+r, we calculate:

  
1
b  = 1 + λ -1po + λ -2pop1 + λ -3pop1p + ...

     = 1 + λ -1po + λ -2pop1 + λ -3pop1p(1 - λ -1p)-1

 which provides an estimate of b from which the stable age-structure can be
obtained with equation (11.23).  Again, if r=0, then  λ =1, simplifying the
equation somewhat.

Introducing additional age-specific reproductive rates poses no special
problems, beyond including the necessary quantities in a table like the one
used above, and keeping track of the necessary algebraic results. this gives
results like eq. (11.11). Sometimes, as was done be Leslie in his study, it is
convenient to use all adults (3 years old and older in this case) as a base, and
calculate proportions of nestlings, 1 and 2 year-olds relative to that base.  In
practice, one may often not be able to determine the exact age of an "adult",
necessitating such an arrangement.

11.17 Exercises

11.17.1 Discrete and continuous rates of increase

Most species show some degree of seasonality in reproduction. There is
thus an annual cycle of numbers, peaking at the period of maximum
reproductive effort, and reaching a minimum when reproduction is at the
lowest annual rate (or not occurring at all in many species). Annual rates of
growth should thus be computed from measurements made at the same time
each year, and the "compound interest" formula is the appropriate model for
population growth:
                                       Nt+1 = Nt(1 + r)t

where t is expressed in years. There are some species that will reproduce
continuously under suitable conditions. The continuous time model:
                                       Nt+1 = Nt ert

 then provides a close approximation to observations, and t can be measured in
time units of varying length.

As a matter of mathematical convenience and custom, many authors use
the continuous model exclusively, When r is small, and t not too large, it makes
little difference which model is used. Students should try values of r = 0.01,
0.05, 0.10 for t = 5,10,20 in the two equations in order to see how the results
d i f fe r .
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If we utilize λ  in equations, it can represent either case, i.e., λ =er or
λ =1+r. The main difference arises when one reports a rate of increase as r. In
one case r=logeλ , and in the other, r=λ -1. Students should try calculating r from
values of λ  calculated from the two definitions (i.e., suppose λ=1.25, a n d
calculate r = l o geλ  and r=λ -1 and compare the results. Compare the series

expansions of loge(1+r) and er for further understanding.

11.17.2  Constructing a stable age distribution

Make a numerical version of the table of Sec. 11.13  using p=0.9 and
r=0.1. Carry it to the fifth generation. Note that each succeeding entry for a
given year class is simply p times the previous value, and the last year class in
each generation is given by the last term in the equation for total population
size given below the table. Check to be sure that your values add to (1+r)i  for
the ith generation. Convert the last row into proportions, and calculate the
stable age distribution from eq. (11.23) and enter it as a final row in the table.
Note that the final year class in each row represents newborns and is
consequently co, so that you enter the stable age entries from right to left in
the last row.

Since survivors from the zeroth generation are calculated as pi , it will
take quite a long time before that generation is reduced to a level
commensurate with the result expected from eq.(11.15). In 20 years, we have
(0.9)20=0.1216. Compare this with the result you get from eq. (11.23). Hence,
with high survival rates, changes in age structure can persist for fairly long
time periods.

11.7,3 Calculating rate of increase for fur seals.

Use of equations (11.22) to (11.24) can be illustrated with data on the
northern fur seal (Callorhinus ursinus). The data appear in Table 11.17.1 below  
and consist of age-specific reproductive rates (mx ) and annual survival rates
(px , which are often written as sx). The mx entries in the table are one-half of
pregnancy rates observed in extensive pelagic collections of fur seals (some
12,000 seals were aged). Survival rates were estimated in various ways.
Survival from birth to age 3 comes from estimating pup numbers and the
number of 3 year-old males present at the time they were harvested for furs.
This three year rate was arbitrarily partitioned over the first 3 years of life. A
single adult survival rate was estimated from the rate of decrease of the
relative size of age classes from age 3 up to age 16, and then from averaging
ratios of pairs of year-classes for animals older than age 16. More details are
available in Eberhardt (1981).

Calculations proceed by forming an lx  column from the annual survival
rates simply by taking products, with lo = 1 by definition. Since mx  = 0 for the
early age-classes, equation (11.20) can be written as:

                                    1 = ∑
3

24
 λ -xlxmx 
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The equation is solved for λ  by iteration, i.e., one chooses a value of λ  in the
neighborhood of unity, calculates the sum, and either increases or decreases λ
according as the sum exceeds or is less than unity, continuing until the sum is
sufficiently close to unity. Programming a calculator or computer to do the
work is desirable if one has more than a few such calculations to carry out.

One iterative method uses linear interpolation. From the data of Table
11.15.1, we can compute that the sum of the lxmx is 1.0604. This is equivalent to
setting λ  = 1.0. Evidently λ  is somewhat larger than unity, so we might try λ =
1.01. This gives a sum of 0.95787. A simple way to remember the interpolation
process is just to note that the two pairs of points computed thus far determine
a straight line, y = a +bx. It is convenient to let y = λ , and x represent the sum
calculated from the equation above, since we want to predict what value of y
results from x=1.0. The slope (b) is the rate of change in y resulting from a
change in x from 1.0604 to 0.95785. This gives:

                            b = 
1.00-1.01

1.0604-0.95787  = -0.0975324.

The intercept, a, is then:

                            a = y - bx=1.01 + 0.0975324(0.95787) = 1.10342,

so the line is thus:

                            y = 1.10342 - 0.0975324x

Setting x=1 gives λ =1.00587. Using this value in eq. (11.20) gives a sum of
0.999006. Another iteration can be obtained by following the same procedure,
using the new value and that for λ =1. This gives

                             y=1.10319 - 0.0956119x

or λ =1.00578 which yields a sum of 0.99992. A sketch is always helpful in
keeping track of things in the interpolation process.

Linear interpolation formulas given in textbooks and manuals require
fewer calculations, but the above procedure should be easy to remember. Other
approaches can be used when a calculator or computer is programmed.
Perhaps the simplest is to start with λ =1 and change it by some small
increment which is positive or negative depending on whether the resulting
sum (eq.(11.20) is greater or less than 1.0. As the sum decreases, then the
increment should be made smaller, down to the order of accuracy wanted. As
has been noted before here, one can conveniently avoid most of the above by
using SOLVER in EXCEL.

When λ  has been calculated, eq.(11.22) can be used to calculate the
"birth rate per capita" (b) and eq.(11.23) then provides the proportions in
various age-classes found in a population having the stable age structure.
These are shown for the fur seal data in Table 11.15.1. Note that b is also the
first entry in the age structure table (why?).
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11.17.4  Rates of increase from Leslie's model

Leslie (1966) gave estimates of po = 0.7, p1 = 0.8, p2 = 0.9 and F = 0.2307 for
a guillemot (murre) population. Solving eq. (11.33) with these values requires
finding the positive root of a cubic equation:
                          x3 - 0.9x2 - 0.116273 = 0
which has the solution x = 1.01325 (=λ ). From eq. (11.28), we get Ro  =
0.116273/0.1 = 1.1627. Leslie also used F = 0.375 and F= 0.50 for illustrative
purposes. Calculate λ  and Ro corresponding to these two values of F.

11.17.5 Calculating a stable age distribution for Leslie's data

For F = 0.2307 and the survival rates given in the exercise above,
calculate the stable age distribution for Leslie's guillemots at the time of
hatching, assuming that there are 1,000 adults (3 years of age and older). Use
the equation following (11.24) to estimate b, and eq.(11.23) to obtain cx.

11.17.6  Extending Leslie's simplified model

Leslie (1966) assumed that the guillemots began reproduction at age 3.
As discussed in Sec. 11.15, he then produced a cubic equation, and solved that
for λ . Often, one will not have the data to solve the resulting polynomial, but it
may nonetheless be useful to explore possibilities with the data that are on
hand. Thus Eberhardt and Siniff (1977) wrote the corresponding equation as:
                              1 = λ -apop1pa-2F(1 - pλ -1)-1

where a = age of first reproduction. Students should check to see that this
reduces to eq. (11.33) when a = 3.

The quantity often missing in field studies is survival from birth to
adulthood, so the above equation was rearranged by defining the ratio:

                                        K =  
pop1

p2  

which is the ratio of juvenile survival to that of adults. This then gives:

                                       K = 
λa-1(λ -p)

Fpa  

If we have estimates of F and p, it is then possible to explore the rates of
increase likely to result from various ratios of juvenile to adult survival.
Eberhardt and Siniff (1977:Fig. 3) plotted some values for convenient
inspection of possibilities. Other arrangements of the simplified equations
were used to examine other facets of marine mammal population dynamices .
An important conclusion was that the age of first reproduction is not as
important in determining rates of increase as seems to be assumed in many
r e f e r e n c e s .

11.17.7  Calculating length of a generation

Try the equation of Sec. 11.14 on the guillemot data given above. You
will need to replace integrals by summations and use sums of series. Make a
table showing the three estimates for length of generation for each of the
three values of F given in the example.
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Table 11.17.1. Age structure data for northern fur seals.

Age cx mx lx px        

0 0.18876 0 1 1
1 0.10288 0 0.548 0.548
2 0.08183 0 0.4386 0.800
3 0.07419 0.0015 0.400 0.912
4 0.06727 0.0205 0.3648 0.912
5 0.06100 0.192 0.3327 0.912
6 0.05531 0.3815 0.3034 0.912
7 0.05015 0.4020 0.2767 0.912
8 0.04547 0.433 0.2523 0.912
9 0.04123 0.4495 0.2301 0.912
10 0.03738 0.4405 0.2099 0.912
11 0.03390 0.446 0.1914 0.912
12 0.03074 0.440 0.1746 0.912
13 0.02787 0.434 0.1592 0.912
14 0.02527 0.420 0.1452 0.912
15 0.02291 0.4135 0.1324 0.912
16 0.02077 0.402 0.1207 0.912
17 0.01396 0.341 0.0816 0.676
18 0.00893 0.3325 0.0525 0.643
19 0.00499 0.273 0.0295 0.562
20 0.00310 0.239 0.0185 0.626
21 0.00135 0.293 0.0081 0.438
22 0.00054 0.178 0.0032 0.4
23 0.00016 0.05 0.0009 0.3
24 0.00003 0 0.00019 0.2

Exercise 11.17.8.     The Leslie matrix.
The results given in this Chapter depend on the discrete form of Lotka’s
equation and the assumption of a birth-pulse population as expressed in eqs.
(11.5) and (11.6). Because the Leslie matrix is widely used, students should be
familiar with it. The following table gives the elk data of Table 11.1 expressed
as a Leslie matrix (but the matrix is printed in two blocks because of space
constraints,  and the row and column numbers are not part of the matrix).

1 2 3 4 5 6 7 8 9 1 0
1 0 0.0505 0.3158 0.3192 0.3189 0.3184 0.3178 0.3167 0.3153 0.3130
2 0.995 0 0 0 0 0 0 0 0 0
3 0 0.995 0 0 0 0 0 0 0 0
4 0 0 0.9934 0 0 0 0 0 0 0
5 0 0 0 0.994 0 0 0 0 0 0
6 0 0 0 0 0.9936 0 0 0 0 0
7 0 0 0 0 0 0.9929 0 0 0 0
8 0 0 0 0 0 0 0.9918 0 0 0
9 0 0 0 0 0 0 0 0.9903 0 0

1 0 0 0 0 0 0 0 0 0 0.988 0
1 1 0 0 0 0 0 0 0 0 0 0.9845
1 2 0 0 0 0 0 0 0 0 0 0
1 3 0 0 0 0 0 0 0 0 0 0
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1 4 0 0 0 0 0 0 0 0 0 0
1 5 0 0 0 0 0 0 0 0 0 0
1 6 0 0 0 0 0 0 0 0 0 0
1 7 0 0 0 0 0 0 0 0 0 0
1 8 0 0 0 0 0 0 0 0 0 0
1 9 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0 0 0 0
2 2 0 0 0 0 0 0 0 0 0 0
2 3 0 0 0 0 0 0 0 0 0 0

1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3
0.3097 0.3049 0.2979 0.2876 0.2730 0.2527 0.2251 0.1895 0.1466 0.1001 0.0567 0.0243 0.0243

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

0.9795 0 0 0 0 0 0 0 0 0 0 0 0
0 0.9719 0 0 0 0 0 0 0 0 0 0 0
0 0 0.9608 0 0 0 0 0 0 0 0 0 0
0 0 0 0.9445 0 0 0 0 0 0 0 0 0
0 0 0 0 0.9208 0 0 0 0 0 0 0 0
0 0 0 0 0 0.8865 0 0 0 0 0 0 0
0 0 0 0 0 0 0.8377 0 0 0 0 0 0
0 0 0 0 0 0 0 0.77 0 0 0 0 0
0 0 0 0 0 0 0 0 0.6791 0 0 0 0
0 0 0 0 0 0 0 0 0 0.5632 0 0 0
0 0 0 0 0 0 0 0 0 0 0.4261 0 0
0 0 0 0 0 0 0 0 0 0 0 0.2813 0

The first row of the matrix contains the reproductive values for ages listed in the column
headings (these are ages one and older as newborns do not appear in the Leslie matrix).
The reproductive rates are those of the first column of Table 11.1 multiplied by survival
from birth to age 1 (0.6745). The entries in the diagonal starting with age 2 (left column of
numbers) are survival rates from age one onwards as shown in Table 11.1. A stable age
distribution is calculated as in eq.(11.6) except that one has to recode the age-classes so
that age one is now coded as age-class zero. This lets us set up a stable age distribution
for 10,000 elk which is used as an age vector (column of ages) along with the MMULT
function of EXCEL. To use that function, one enters the range of the Leslie matrix followed
by a comma and the range of the initial age structure vector (must have the same number of
rows as the Leslie matrix). The MMULT function then produces a new vector which is the
population structure one year later. Because we started out with the stable age structure,
the same proportions are obtained as in the initial age structure. If one starts with a
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different age structure, then repeated projections show a convergence to the stable age
structure. The several computations are as follows:

lambda 1.20133
SURVIVAL Calc. for COHORT 1s t 2nd 3 rd
RATES l ( x ) C(x) c (x ) project

.
prop pro j prop pro j prop

0 0.995 1 1 0.1798 1798.2 2160.3 0.1798 2595.3 0.1798 3117.8 0.180
1 0.995 0.995 0.828 0.149 1489.4 1789.2 0.149 2149.5 0.149 2582.3 0.149
2 0.9934 0.990 0.686 0.123 1233.6 1481.9 0.123 1780.3 0.123 2138.8 0.123
3 0.994 0.983 0.567 0.102 1020.1 1225.4 0.102 1472.1 0.102 1768.5 0.102
4 0.9936 0.978 0.469 0.084 844.0 1013.9 0.084 1218.1 0.084 1463.3 0.084
5 0.9929 0.971 0.388 0.070 698.1 838.6 0.070 1007.4 0.070 1210.3 0.070
6 0.9918 0.964 0.321 0.058 577.0 693.1 0.058 832.7 0.058 1000.3 0.058
7 0.9903 0.957 0.265 0.048 476.3 572.2 0.048 687.4 0.048 825.8 0.048
8 0.988 0.947 0.218 0.039 392.7 471.7 0.039 566.7 0.039 680.8 0.039
9 0.9845 0.936 0.180 0.032 322.9 387.9 0.032 466.0 0.032 559.9 0.032

1 0 0.9795 0.921 0.147 0.026 264.6 317.9 0.026 381.9 0.026 458.8 0.026
1 1 0.9719 0.902 0.120 0.022 215.8 259.2 0.022 311.4 0.022 374.1 0.022
1 2 0.9608 0.877 0.097 0.017 174.6 209.7 0.017 251.9 0.017 302.7 0.017
1 3 0.9445 0.843 0.078 0.014 139.6 167.7 0.014 201.5 0.014 242.1 0.014
1 4 0.9208 0.796 0.061 0.011 109.8 131.9 0.011 158.4 0.011 190.3 0.011
1 5 0.8865 0.733 0.047 0.008 84.1 101.1 0.008 121.4 0.008 145.9 0.008
1 6 0.8377 0.650 0.035 0.006 62.1 74.6 0.006 89.6 0.006 107.6 0.006
1 7 0.77 0.544 0.024 0.004 43.3 52.0 0.004 62.5 0.004 75.1 0.004
1 8 0.6791 0.419 0.015 0.003 27.7 33.3 0.003 40.0 0.003 48.1 0.003
1 9 0.5632 0.285 0.009 0.002 15.7 18.8 0.002 22.6 0.002 27.2 0.002
2 0 0.4261 0.160 0.004 0.001 7.4 8.8 0.001 10.6 0.001 12.7 0.001
2 1 0.2813 0.068 0.001 0.000 2.6 3.1 0.000 3.8 0.000 4.5 0.000
2 2 0.019 0.000 0.000 0.6 0.7 0.000 0.9 0.000 1.1 0.000

sum 5.561 1.000 10000 12013 1.000 14432 1.000 17338 1.000
B= 0.1798

Repeat the calculations in order to become familiar with the Leslie matrix. There are
many more manipulations possible, and one can calculate lambda directly from the
matrix, and so on.

Exercise 11.17.9  Convergence to stable age structure.
The above exercise started out with a stable age structure. Use the same matrix
for projections, but start the projections with a different initial age vector.
Enter 4287 above the first column of the spreadsheet that will contain your
calculations, number a column from 1 to 23 as in the above exercise, but now
make the “cohort” entries by multiplying by 0.7 raised to the power of the row
numbers, i.e., entries will be calculated from 4287*0.7^x , where x is the row
number (1 to 23). The first cohort should be as shown below. Now project out 10
years proceeding as in the previous exercise, and note that the proportions in
each age class approach the stable age distribution as in the previous exercise.
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4287
0.7

COHORT
1 3000.90
2 2100.63
3 1470.44
4 1029.31
5 720.52
6 504.36
7 353.05
8 247.14
9 173.00

1 0 121.10
1 1 84.77
1 2 59.34
1 3 41.54
1 4 29.08
1 5 20.35
1 6 14.25
1 7 9.97
1 8 6.98
1 9 4.89
2 0 3.42
2 1 2.39
2 2 1.68
2 3 1.17

SUM 10000.26


